Characterization of the zinc binding activity of the rubella virus nonstructural protease.
نویسندگان
چکیده
The rubella virus (RUB) nonstructural (NS) protein (NSP) ORF encodes a protease that cleaves the NSP precursor (240 kDa) at a single site to produce two products. A cleavage site mutation was introduced into a RUB infectious cDNA clone and found to be lethal, demonstrating that cleavage of the NSP precursor is necessary for RUB replication. Based on computer alignments, the RUB NS protease was predicted to be a papain-like cysteine protease (PCP) with the residues Cys1152 and His1273 as the catalytic dyad; however, the RUB NS protease was recently found to require divalent cations such as Zn, Co, and Cd for activity (X. Liu, S. L. Ropp, R. J. Jackson, and T. K. Frey, J. Virol. 72:4463-4466, 1998). To analyze the function of metal cation binding in protease activity, Zn binding studies were performed using the minimal NS protease domain within the NSP ORF. When expressed as a maltose binding protein (MBP) fusion protein by bacteria, the NS protease exhibited activity both in the bacteria and in vitro following purification when denatured and refolded in the presence of Zn. Atomic absorption analysis detected 1.6 mol of Zn bound per mol of protein refolded in this manner. Expression of individual domains within the protease as MBP fusions and analysis by a Zn(65) binding assay revealed two Zn binding domains: one located at a predicted metal binding motif beginning at Cys1175 and the other one close to the cleavage site. Mutagenesis studies showed that Cys1175 and Cys1178 in the first domain and Cys1227 and His1273, the His in the predicted catalytic site, in the second domain are essential for zinc binding. All of these residues are also necessary for the protease activity, as were several other Cys residues not involved in Zn binding. Far-UV circular dichroism (CD) analysis of the MBP-NS protease fusion protein showed that the protease domain contained a large amount of alpha-helical structure, which is consistent with the results of secondary-structural prediction. Both far-UV-CD and fluorescence studies suggested that Zn did not exert a major effect on the overall structure of the fusion protein. Finally, protease inhibitor assays found that the protease activity can be blocked by both metal ion chelators and the metalloprotease inhibitor captopril. In conjunction with the finding that the previously predicted catalytic site, His1273, is essential for zinc binding, this suggests that the RUB NS protease is actually a novel virus metalloprotease rather than a PCP.
منابع مشابه
The rubella virus nonstructural protease requires divalent cations for activity and functions in trans.
The rubella virus (RUB) nonstructural (NS) protease is a papain-like cysteine protease (PCP) located in the NS-protein open reading frame (NSP-ORF) that cleaves the NSP-ORF translation product at a single site to produce two products, P150 (the N-terminal product) and P90 (the C-terminal product). The RUB NS protease was found not to function following translation in vitro in a standard rabbit ...
متن کاملNS3 Protease from Hepatitis C Virus: Biophysical Studies on an Intrinsically Disordered Protein Domain
The nonstructural protein 3 (NS3) from the hepatitis C virus (HCV) is responsible for processing the non-structural region of the viral precursor polyprotein in infected hepatic cells. NS3 protease activity, located at the N-terminal domain, is a zinc-dependent serine protease. A zinc ion, required for the hydrolytic activity, has been considered as a structural metal ion essential for the stru...
متن کاملCharacterization of the rubella virus nonstructural protease domain and its cleavage site.
The region of the rubella virus nonstructural open reading frame that contains the papain-like cysteine protease domain and its cleavage site was expressed with a Sindbis virus vector. Cys-1151 has previously been shown to be required for the activity of the protease (L. D. Marr, C.-Y. Wang, and T. K Frey, Virology 198:586-592, 1994). Here we show that His-1272 is also necessary for protease ac...
متن کاملA cysteine-rich metal-binding domain from rubella virus non-structural protein is essential for viral protease activity and virus replication.
The protease domain within the RUBV (rubella virus) NS (non-structural) replicase proteins functions in the self-cleavage of the polyprotein precursor into the two mature proteins which form the replication complex. This domain has previously been shown to require both zinc and calcium ions for optimal activity. In the present study we carried out metal-binding and conformational experiments on...
متن کاملRubella virus nonstructural protein protease domains involved in trans- and cis-cleavage activities.
Rubella virus (RV) genomic RNA contains two large open reading frames (ORFs): a 5'-proximal ORF encoding nonstructural proteins (NSPs) that function primarily in viral RNA replication and a 3'-proximal ORF encoding the viral structural proteins. Proteolytic processing of the RV NSP ORF translation product p200 is essential for viral replication. Processing of p200 to two mature products (p150 a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 74 13 شماره
صفحات -
تاریخ انتشار 2000